

EPAct/EISA Testing Status

CRC Emissions Committee

Meeting

Connie Hart

January 14, 2009

- Light Duty Gas Exhaust Fuels (SwRI)
- Oil Study (NVFEL)
- PM Speciation (ORD NRMRL/NVFEL)
- Nonroad Exhaust (Intertek Carnot)
- E-77-2 evaporative emissions laboratory testing projects
- Percent of High Evap in Fleet, E-77-3 (Colorado/Texas)

Light Duty Gas Exhaust Fuels (SwRI)

- Objective: Phases 1 and 2 are in support RFS 2 and Phase 3 is to establish the effects of RVP, T50, T90, aromatic and EtOH content on exhaust emissions from Tier 2 vehicles
- Collaborating with DOE (NREL)
- Program Design
 - Phase 1 Testing:
 - Testing 75°F over LA92
 - 3 'typical' fuels E0, E10, and E15
 - 19 high sales volume Tier 2, 2 high-emitter and 1 high mileage NLEV vehicles
 - Testing complete for first 19 vehicles
 - Phase 2: Repeat of Phase 1 except at 50°F
 - Testing complete for Fuel 17
 - Testing finishing this week for Fuel 18
 - Should be complete with testing for Fuel 19 by 2nd week of Feb 2009
 - Phase 3: Main Program
 - 27 fuels tested in 19 Tier 2 vehicles, E85 tested in 4 FFVs that are included in the 19
 - Fuel Matrix, 5 variables in matrix
 - Revised matrix goes from 5 E15/4 E20 fuels -> 3 E15/6 E20 fuels to streamline the blending process

Phase 3 Status

- 27 Fuels:
 - All recipes have been sent to SwRI/Halterman
 - 12 fuels in hand blend phase
 - 8 fuels in bulk blend phase
 - 7 fuels delivered to SwRI
- E85 fuel provided by CRC
 - To be shipped from Sarnia, Ontario
- Testing to begin by mid-February

EPAct Fuel Matrix

Phase 3
Base Program (EPA)
(Fuels 1-16)

Phases 1 and 2 RFS 2 Subset (EPA/DOE) (Fuels 17-19)

Phase 3
Additional Fuels
(DOE)
(Fuels 20-29)

E85 (DOE) CRC Additional Eucls

	T50	T90	ЕТОН	RVP	ARO
Fuel #	۴	۴	%	psi	%
1	150	300	10	10	15
2	240	340	0	10	15
3	220	300	10	7	15
4	220	340	10	10	15
5	240	300	0	7	40
6	190	340	10	7	15
7	190	300	0	7	15
8	220	300	0	10	15
9	190	340	0	10	40
10	220	340	10	7	40
11	190	300	10	10	40
12	150	340	10	10	40
13	13 220		0	7	40
14	190	340	0	7	15
15	190	300	0	10	40
16	220	300	10	7	40
17	215	325	0	9	30
18	202	325	10	9	25
19	195	325	15	9	23
20	160	300	20	7	15
21	160	300	20	7	40
22	160	300	20	10	15
23	160	340	20	7	15
24	160	340	20	10	15
25	160	340	20	10	40
26	150	340	15	10	40
27 190		340	15	7	15
28	190	300	15	7	40
29	TBD	TBD	85	TBD	TBD
30 31	150	325	10	10 10	40 15
31	160	325	20	10	15

Revised _Fuels

5

Light Duty Exhaust Fuels (SwRI) Updated Testing Schedule

Phase	Duration		
Fuel blending	February 2008	Early 2009	
Phase 1	April 2008	August 2008	
Phase 2	Novembe r 2008	February 2009	
Phase 3	February 2009	Decembe r 2009	
Reporting	Decembe r 2009	March 2010 ⁶	

Fresh Oil PM Study (NVFEL) Program Status

- Oil PM stabilization on E0, E10 and E20 completed
 - EPAct Phase 1 oil aging (2k) "safe" from fresh oil influences on PM
 - Conclusion: Stabilization occurs much lower mileage (.5k to 1k)
 - Likely oil time at temp relationship
 - Did not isolate to PCV (off-gassing) or cylinder surface (oil shearing)
- Abstract submitted to present results at CRC Emissions Workshop in San Diego, March 2009

PM Speciation (NVFEL/ORD-NRMRL)

- Objective: To determine fuel effects on PM mass, size and composition, and obtain speciated semi-volatile VOC, metals and ions, and gaseous VOC (MSATs), alcohols and carbonyls.
- Program Design
 - E0, E10 and E85 fuels
 - 3 vehicles (+/-) similar to SwRI vehicles but not necessarily identical (1 non-FFV)
 - 75F and 20F
- Oil-PM Pilot study will help determine PM metals detection limits (secondary experiment)
- Time Line: mid 2009
- In process of designing a Round Robin Program split between NVFEL and ORD-NRMRL

Nonroad Exhaust (Intertek Carnot)

- Objective: Test 6 pairs of small SI engines < 25 hp
 (2 Class 1, 2 Class 2, and 2 Class 4) on 3 fuels (national average E0 (Fuel 17 from fuel matrix), an E10 (Fuel 18 from fuel matrix), and Certification fuel (Indolene))
- Fuels and Aging
 - 2 engines of each engine model
 - One aged on E0 (Fuel 17)
 - One aged on E10 (Fuel 18)
- Emission Test Sequence
 - Baseline: Age each engine for 10 hours and perform 3 emission tests on each fuel (Fuel 17, Fuel 18, and Cert fuel)
 - Aging: Age engine to half life and repeat all emission tests
- Addition:
 - Full life aging for 2 handheld engines (1 on E0, 1 on E10)
- Timeline: Complete by end of January 2009 with report

New Nonroad Program - SwRI

- Objective: Supplement ongoing nonroad ethanol test programs by ARB and EPA on nonroad applications.
 - Collect exhaust emission data (primary, alcohols, N2O, speciation, etc.) on federal test fuel, ARB E10 fuel and an ARB E10 boost to 10psi fuel.
- Engines/applications chosen:
 - Two new 2 stroke motorey Pending, still looking
 - Two used 2 stroke motor;
 - Two used ATV's, found Require
 - One large SI engine with c unmodified for program
 - Two Sterndrive/Inboard marine erigines (from ARB)
 - 9 small SI engines < 25 hp (from ARB)
- New/As-is engine condition and certification cycle testing only (no durability or real world aging).
- Timing: Completed by June 2009
- Status: Just started SI engine testing last week

Evaporative Testing E-77-2 (ATL)

- Program Design
 - Vehicles
 - 8 Tier 2/Near Zero
 - 2 implanted leaks
 - Fuels
 - E0, 7 and 9 psi
 - E10, 7 and 10 psi
 - E20, 9 psi funded by DOE
 - Test Plan, after 4 weeks preconditioning at each ethanol level:
 - Static permeation
 - Running loss
 - Hot soak
 - 72 hour diurnal (65°-105°F)
 - Status: Complete, waiting for report

Evaporative Testing E-77-2b (thru SwRI)

- Objective: Additional, newer technology, high sales volume vehicles to the CRC E-77-2
- Plan to repeat E-77-2 program with 8 more vehicles:
 - Add Static test at 105°F
 - Speciation on 100+ VOCs
- SwRI, sub-contracting with HH&A, testing at ATL (complete end of 2009)
- CRC will supply fuel which was left over from E-74b and E-77-2 programs for continuity
- Vehicles:
 - CRC to supply 5 vehicles from E-74b program
 - 3 additional vehicles:
 - 1 PZEV
 - 2 MY 2000 enhanced evap

E-77-2b Fleet Composition

Updated 11.19.08

Veh <u>No.</u>	<u>Yr</u>	<u>Make</u>	<u>Model</u>	<u>Odo.</u>	Evap Family	Evap Standards (all are ORVR)	Tank <u>Size</u>	Fuel Tank Plastic <u>Metal</u>
220	2000	Chevrolet	Malibu			Tier 1		
221	2000	Mitsubishi	Eclispe			Tier1		
206	2002	Nissan	Altima	110,399	2NSXR0120RCB	Tier 1	20.0	Plastic
208	2002	Chevrolet	Trailblazer	60,233	2GMXR0175922	Tier 1	18.6	Plastic
209	2004	Chrysler	Stratus	63,778	4CRXR0130GBA	Tier 1	16.0	Plastic
210	2004	Chevrolet	Impala	63,157	4GMXR0124919	Near Zero	17.0	Plastic
213	2004	Dodge	Ram 1500	99,372	4CRXR0218GDH	Near Zero	35.0	Plastic
222	2004	Nissan	Altima			Zero Evap		

- CRC/NREL additional funds
- Adding E20 7 and 9 psi to E-77-2b vehicles
- Adding E20 7 psi to E-77-2 vehicles -Pending Approval
- CRC has approved proposal generated at July E-77 Data Review meeting at NVFEL:
 - Implant leaks on vehicles 207 and 211 (same as previous implants)
 - Two leak mechanisms:
 - Top of fuel tank
 - At hose connecting to canister connection
 - For one Near Zero and one Enhanced vehicle go through Dynamic Permeation Test Procedure:
 - At two temperatures (different from 86°F previously)
 - 65 or 70°F
 - 95°F
 - For 5 fuels in current program (E0 7 and 9 psi, E10 7 and 10 psi, and E20 9 psi)

Determine Fraction of High Evaporative Emissions Vehicles in Fleet, E-77-3 (ERG)

- Objective: Find the percentage of high emitting evaporative emission vehicles in the average fleet of on-road motor vehicle passenger cars and light trucks.
- Pilot Program: propose and refine test procedure (Colorado)
 - 50-100 vehicles
 - Pre-screen using RSD
 - Evaluate several methods including portable SHED
- Main Program (Texas)
 - Do measurements on ~1000 vehicles
 - Apply protocols developed in pilot
- ICR
 - Specific to this project
 - Received approval for Pilot only
 - Will resubmit for larger program when plan is complete
- Collaboration
 - Colorado Department of Public Health and Environment (CDPHE)
 - Offering RSD and technical expertise
 - CRADA
 - CRC

Denver Pilot Summer 2008 I/M Area

- RSD Investigation 1st two weeks in field:
 - Verified efficacy of using RSD on simulated fleet
 - CDPHE preliminary work in 2007
 - Optimized the use of RSD for initial screening for Evap
 - Methodology
 - RSD 3000 vs 4000 technology upgrade, now sees both exhaust and evap HC – using in tandem sees high evap
- Recruited 87 vehicles for measurement – 4 weeks in field
 - Sampling method: Probability Proportional to RSD
- Measurement Methods:
 - Modified CA Leak check meth
 - Hand wand check with Sierra monitor

 Portable SHED (PSHED) for quick Hot Soak (15 min) Denver Pilot: Entry to Lipan Station,

RSD Screen,

Solicitation area

Denver Pilot:

E-77-3 Summary of Pilot

Vehicles Solicited	301
Solicited	301
Eligible	
Vehicles	196
PSHEDs	87
Acceptance Rates	28.9%/44.4
IXACCS	70
Lab SHEDs	23

Preliminary Results Summary

45 "leaking"* vehicles out of 87:

Leak Mechanism s	Number of Vehicles	
Fill neck	12	
Top of tank	10	
Fuel injector	6	
Fuel rail	4	
Canister connections	3-6 (3 "underbody" could be hoses to canister)	
Under body	4	
Fuel cap defined as > .3 g/15 m (std of 2 g/test), and 75% occurs	in, if assume 20% of std is attributable t in 1 st 15 min	o hot s
Significant leaks, undetermined source	21	3

Low Evap Vehicle: All tailpipe

species disperse simila

ERG and Subcontractors have developed an algorithm using RSD 4000 alone: RSD Evap Index checks the difference in HC and CO₂ dispersion.

Low Evap Vehicle: HC is linear with tailpipe CO₂.

Low Evap Vehicle: HC vs CO₂ residuals are

High Evap Vehicle: HC trend different from tailpipe s

ERG and Subcontractors have developed an algorithm using RSD 4000 alone: RSD Evap Index checks the difference in HC and CO₂ dispersion.

High Evap Vehicle: HC is scattered vs tailpipe CO₂.

High Evap Vehicle: HC vs CO₂ residuals are

San Antonio Pilot: Rented Warehouse on La Colonia;

Preliminary Findings

- RSD Evap Index
 - Connects RSD and PSHED Evap HC
 - Independent of tailpipe HC
- Ability of RSD to detect High Evaps?
 - One hit detects really high evap emitters
 - Multiple hits probably needed to detect moderately high evap emitters

Larger Program in Spring/Summer 2009

- Powerful tool for estimating evap emission inventories
 - Preliminary analysis shows we are finding high evap emitters
- Continue our analysis over the next
 4-6 weeks
- Need to start planning for the larger program
 - Need ICR approval for larger program
- Need Funding
 - Cost effective, overhead was in pilots
 - ~\$1000 for each vehicle, so roughly 300 vehicles for \$300K. Bigger bang for buck.

Larger Program in Spring

- At end of the 2nd pilot we will develop a plan for a larger study in Spring of 2009
 - Need ICR approval for larger program
 - Do measurements on 250-500 vehicles
 - Apply protocols developed in pilot
 - Cost effective, overhead was in pilots
 - ~\$1000 for each vehicle, so roughly 300 vehicles for \$300K. Bigger bang for buck.
 - Out of budget, looking for funds

30